HSI
From: Bayesian Models for Astrophysical Data, Cambridge Univ. Press
(c) 2017, Joseph M. Hilbe, Rafael S. de Souza and Emille E. O. Ishida
you are kindly asked to include the complete citation if you used this material in a publication
​
​
​
Code 8.9 Random intercept binomial logistic data in R
============================================
y <- c(6,11,9,13,17,21,8,10,15,19,7,12,8,5,13,17,5,12,9,10)
m <- c(45,54,39,47,29,44,36,57,62,55,66,48,49,39,28,35,39,43,50,36)
x1 <- c(1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0)
x2 <- c(1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0)
Groups <- c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)
logitr <- data.frame(y,m,x1,x2,Groups)
​
​
​
​
Code 8.10 Random intercept binomial logistic model in using JAGS
===================================================
library(R2jags)
​
X <- model.matrix(~ x1 + x2, data = logitr)
K <- ncol(X)
re <- length(unique(logitr$Groups))
Nre <- length(unique(Groups))
​
model.data <- list(
Y = logitr$y, # response
X = X, # covariates
m = m, # binomial denominator
N = nrow(logitr), # sample size
re = logitr$Groups, # random effects
b0 = rep(0,K),
B0 = diag(0.0001, K),
a0 = rep(0,Nre),
A0 = diag(Nre))
​
sink("GLMM.txt")
​
cat("
model{
# Diffuse normal priors for regression parameters
beta ~ dmnorm(b0[], B0[,])
​
# Priors for random effect group
a ~ dmnorm(a0, tau * A0[,])
num ~ dnorm(0, 0.0016)
denom ~ dnorm(0, 1)
sigma <- abs(num / denom)
tau <- 1 / (sigma * sigma)
​
# Likelihood function
for (i in 1:N){
Y[i] ~ dbin(p[i], m[i])
logit(p[i]) <- eta[i]
eta[i] <- inprod(beta[], X[i,]) + a[re[i]]
}
}",fill = TRUE)
​
sink()
​
inits <- function () {
list(
beta = rnorm(K, 0, 0.1),
a = rnorm(Nre, 0, 0.1),
num = rnorm(1, 0, 25),
denom = rnorm(1, 0, 1))}
​
params <- c("beta", "a", "sigma")
​
LOGIT0 <- jags(data = model.data,
inits = inits,
parameters = params,
model.file = "GLMM.txt",
n.thin = 10,
n.chains = 3,
n.burnin = 4000,
n.iter = 5000)
​
print(LOGIT0, intervals=c(0.025, 0.975), digits=3)
===================================================
Output on screen:
​
Inference for Bugs model at "GLMM.txt", fit using jags,
3 chains, each with 5000 iterations (first 4000 discarded), n.thin = 10
n.sims = 300 iterations saved
mu.vect sd.vect 2.5% 97.5% Rhat n.eff
a[1] -0.581 0.445 -1.401 0.262 1.017 97
a[2] -0.432 0.374 -1.075 0.341 1.002 300
a[3] -0.007 0.401 -0.806 0.788 1.007 300
a[4] -0.137 0.363 -0.890 0.634 1.003 300
a[5] 1.126 0.421 0.337 1.956 0.999 300
a[6] 0.623 0.371 -0.019 1.429 0.999 300
a[7] -0.062 0.415 -0.862 0.677 1.007 190
a[8] -0.568 0.374 -1.356 0.071 0.996 300
a[9] -0.015 0.355 -0.696 0.652 1.005 260
a[10] 0.172 0.375 -0.483 0.931 0.998 300
a[11] -0.608 0.427 -1.438 0.165 1.018 96
a[12] -0.024 0.425 -0.860 0.741 0.998 300
a[13] -0.191 0.407 -0.949 0.555 0.997 300
a[14] -0.559 0.441 -1.502 0.266 1.009 150
a[15] 0.884 0.418 0.100 1.738 1.028 69
a[16] 0.817 0.403 0.107 1.591 1.003 300
a[17] -0.429 0.482 -1.372 0.472 1.004 290
a[18] 0.066 0.380 -0.670 0.817 1.004 280
a[19] -0.141 0.399 -0.919 0.666 1.027 68
a[20] 0.086 0.392 -0.615 0.911 0.998 300
beta[1] -1.103 0.322 -1.721 -0.430 1.006 300
beta[2] 0.249 0.331 -0.413 0.876 1.003 300
beta[3] -0.295 0.376 -1.008 0.446 1.011 140
sigma 0.676 0.177 0.394 1.041 1.002 300
deviance 97.575 6.516 86.888 111.331 1.005 300
​
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
​
DIC info (using the rule, pD = var(deviance)/2)
pD = 21.3 and DIC = 118.9
DIC is an estimate of expected predictive error (lower deviance is better).