HSI
From: Bayesian Models for Astrophysical Data, Cambridge Univ. Press
(c) 2017, Joseph M. Hilbe, Rafael S. de Souza and Emille E. O. Ishida
you are kindly asked to include the complete citation if you used this material in a publication
​
# Data from code 8.12
N <- 2000 # 10 groups, each with 200 observations
NGroups <- 10
​
x1 <- runif(N)
x2 <- runif(N)
​
Groups <- rep(1:10, each = 200)
a <- rnorm(NGroups, mean = 0, sd = 0.5)
eta <- 1 + 0.2 * x1 - 0.75 * x2 + a[Groups]
mu <- exp(eta)
y <- rpois(N, lambda = mu)
​
poir <- data.frame(
y = y,
x1 = x1,
x2 = x2,
Groups = Groups,
RE = a[Groups])
​
Code 8.14 Bayesian random intercept Poisson model in R using JAGS
=======================================================
library(R2jags)
​
X <- model.matrix(~ x1 + x2, data=poir)
K <- ncol(X)
​
re <- as.numeric(poir$Groups)
Nre <- length(unique(poir$Groups))
​
model.data <- list(
Y = poir$y, # response
X = X, # covariates
N = nrow(poir), # sample size
re = poir$Groups, # random effects
b0 = rep(0,K),
B0 = diag(0.0001, K),
a0 = rep(0,Nre),
A0 = diag(Nre))
​
sink("GLMM.txt")
​
cat("
model {
# Diffuse normal priors for regression parameters
beta ~ dmnorm(b0[], B0[,])
​
# Priors for random effect group
a ~ dmnorm(a0, tau.re * A0[,])
num ~ dnorm(0, 0.0016)
denom ~ dnorm(0, 1)
sigma.re <- abs(num / denom)
tau.re <- 1 / (sigma.re * sigma.re)
​
# Likelihood
for (i in 1:N) {
Y[i] ~ dpois(mu[i])
log(mu[i])<- eta[i]
eta[i] <- inprod(beta[], X[i,]) + a[re[i]]
}
}
",fill = TRUE)
​
sink()
​
inits <- function () {
list(beta = rnorm(K, 0, 0.01),
a = rnorm(Nre, 0, 1),
num = runif(1, 0, 25),
denom = runif(1, 0, 1))}
​
# Identify parameters
params <- c("beta", "a", "sigma.re", "tau.re")
​
# Run MCMC
PRI <- jags(data = model.data,
inits = inits,
parameters = params,
model.file = "GLMM.txt",
n.thin = 10,
n.chains = 3,
n.burnin = 4000,
n.iter = 5000)
​
print(PRI, intervals=c(0.025, 0.975), digits=3)
=======================================================
Output on screen:
​
Inference for Bugs model at "GLMM.txt", fit using jags,
3 chains, each with 5000 iterations (first 4000 discarded), n.thin = 10
n.sims = 300 iterations saved
mu.vect sd.vect 2.5% 97.5% Rhat n.eff
a[1] 0.816 0.214 0.356 1.232 1.002 300
a[2] -0.558 0.223 -1.060 -0.129 1.004 300
a[3] -0.339 0.223 -0.776 0.097 1.013 210
a[4] 0.041 0.216 -0.444 0.476 1.003 300
a[5] 0.531 0.218 0.062 0.956 1.009 290
a[6] 0.073 0.218 -0.398 0.483 1.003 300
a[7] -0.708 0.226 -1.208 -0.305 1.007 210
a[8] 0.266 0.216 -0.198 0.705 1.001 300
a[9] -0.419 0.227 -0.945 0.047 1.003 300
a[10] 0.163 0.219 -0.294 0.595 1.003 300
beta[1] 0.883 0.218 0.460 1.329 1.002 300
beta[2] 0.231 0.054 0.125 0.328 1.014 120
beta[3] -0.769 0.055 -0.885 -0.665 1.017 96
sigma.re 0.576 0.176 0.357 0.979 0.998 300
tau.re 3.717 1.854 1.044 7.868 0.998 300
deviance 6604.581 4.876 6597.501 6616.895 1.028 100
​
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
DIC info (using the rule, pD = var(deviance)/2)
pD = 11.7 and DIC = 6616.3
DIC is an estimate of expected predictive error (lower deviance is better).