HSI
From: Bayesian Models for Astrophysical Data, Cambridge Univ. Press
(c) 2017, Joseph M. Hilbe, Rafael S. de Souza and Emille E. O. Ishida
you are kindly asked to include the complete citation if you used this material in a publication
Code 7.6 Synthetic data for Poisson–logit hurdle zero-altered models
=======================================================
rztp <- function(N, lambda){
p <- runif(N, dpois(0, lambda), 1)
ztp <- qpois(p, lambda)
return(ztp)
}
# Sample size
nobs <- 1000
# Generate predictors, design matrix
x1 <- runif(nobs, -0.5, 2.5)
xb <- 0.75 + 1.5*x1
# Construct Poisson responses
exb <- exp(xb)
poy <- rztp(nobs, exb)
pdata <- data.frame(poy, x1)
# Generate predictors for binary part
xc <- -3 + 4.5*x1
# Construct filter
pi <- 1/(1+exp((xc)))
bern <- rbinom(nobs,size =1, prob=1-pi)
# Add structural zeros
pdata$poy <- pdata$poy*bern
=======================================================
Code 7.7 Bayesian Poisson–logit hurdle zero-altered models
====================================================
require(R2jags)
Xc <- model.matrix(~ 1 + x1, data=pdata)
Xb <- model.matrix(~ 1 + x1, data=pdata)
Kc <- ncol(Xc)
Kb <- ncol(Xb)
model.data <- list(
Y = pdata$poy, # response
Xc = Xc, # covariates
Xb = Xb, # covariates
Kc = Kc, # number of betas
Kb = Kb, # number of gammas
N = nrow(pdata), # sample size
Zeros = rep(0, nrow(pdata)))
sink("HPL.txt")
cat("
model{
# Priors beta and gamma
for (i in 1:Kc) {beta[i] ~ dnorm(0, 0.0001)}
for (i in 1:Kb) {gamma[i] ~ dnorm(0, 0.0001)}
# Likelihood using zero trick
C <- 10000
for (i in 1:N) {
Zeros[i] ~ dpois(-ll[i] + C)
LogTruncPois[i] <- log(Pi[i]) + Y[i] * log(mu[i]) - mu[i] -(log(1 - exp(-mu[i])) + loggam(Y[i] + 1) )
z[i] <- step(Y[i] - 0.0001)
l1[i] <- (1 - z[i]) * log(1 - Pi[i])
l2[i] <- z[i] * (log(Pi[i]) + LogTruncPois[i])
ll[i] <- l1[i] + l2[i]
log(mu[i]) <- inprod(beta[], Xc[i,])
logit(Pi[i]) <- inprod(gamma[], Xb[i,])
}
}", fill = TRUE)
sink()
inits <- function () {
list(beta = rnorm(Kc, 0, 0.1),
gamma = rnorm(Kb, 0, 0.1))}
params <- c("beta", "gamma")
ZAP <- jags(data = model.data,
inits = inits,
parameters = params,
model = "HPL.txt",
n.thin = 1,
n.chains = 3,
n.burnin = 2500,
n.iter = 5000)
print(ZAP, intervals=c(0.025, 0.975), digits=3)
====================================================
Output on screen:
Inference for Bugs model at "HPL.txt", fit using jags, 3 chains,
each with 5000 iterations (first 2500 discarded)
n.sims = 7500 iterations saved
mu.vect sd.vect 2.5% 97.5% Rhat n.eff
beta[1] 0.737 0.032 0.674 0.800 1.005 820
beta[2] 1.503 0.016 1.472 1.534 1.005 670
gamma[1] -2.764 0.212 -3.190 -2.354 1.004 650
gamma[2] 5.116 0.298 4.550 5.728 1.004 610
deviance 20004080.026 2.741 20004076.529 20004086.654 1.000 1
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
DIC info (using the rule, pD = var(deviance)/2)
pD = 3.7 and DIC = 20004083.8
DIC is an estimate of expected predictive error (lower deviance is better).