From: Bayesian Models for Astrophysical Data, Cambridge Univ. Press

(c) 2017,  Joseph M. Hilbe, Rafael S. de Souza and Emille E. O. Ishida  

 

you are kindly asked to include the complete citation if you used this material in a publication

Code 7.2 Bayesian zero-inflated Poisson in Python using Stan

====================================================

import numpy as np
import pystan 
import statsmodels.api as sm

from rpy2.robjects import r, FloatVector
from scipy.stats import uniform, norm


def zipoisson(N, lambda_par, psi):
    """Zero inflated Poisson sampler."""

     # load R package
    r('library(VGAM)')

    # get R functions
    zipoissonR = r['rzipois']

    res = zipoissonR(N, FloatVector(lambda_par), 
                                pstr0=FloatVector(psi))
  
    return np.array([int(item) for item in res])


# Data
np.random.seed(141)                                                              # set seed to replicate example
nobs= 5000                                                                             # number of obs in model 

x1 = uniform.rvs(size=nobs)

xb = 1 + 2.0 * x1                                                                    # linear predictor
xc = 2 - 5.0 * x1

exb = np.exp(xb)          
exc = 1.0 / (1.0 + np.exp(-xc))

zipy = zipoisson(nobs, exb, exc)                                            # create y as adjusted

X = np.transpose(x1)
X = sm.add_constant(X)

mydata = {}                                                                           # build data dictionary
mydata['N'] = nobs                                                                # sample size
mydata['Xb'] = X                                                                   # predictors         
mydata['Xc'] = X
mydata['Y'] = zipy                                                                 # response variable
mydata['Kb'] = X.shape[1]                                                    # number of coefficients
mydata['Kc'] = X.shape[1]

# Fit
stan_code = """
data{
    int N;
    int Kb;
    int Kc;
    matrix[N, Kb] Xb;
    matrix[N, Kc] Xc;
    int Y[N];
}
parameters{
    vector[Kc] beta;
    vector[Kb] gamma;
    
}
transformed parameters{
    vector[N] mu;
    vector[N] Pi;

    mu = exp(Xc * beta);
    for (i in 1:N) Pi[i] = inv_logit(Xb[i] * gamma);
}
model{
    real LL[N];

    for (i in 1:N) {
        if (Y[i] == 0) {
            LL[i] = log_sum_exp(bernoulli_lpmf(1|Pi[i]), 
                                                bernoulli_lpmf(0|Pi[i]) + 
                                                poisson_lpmf(Y[i]|mu[i]));
        } else {
            LL[i] = bernoulli_lpmf(0|Pi[i]) +
                               poisson_lpmf(Y[i]|mu[i]);
        }
    }
    
    target += LL;
}
"""

# Run mcmc
fit = pystan.stan(model_code=stan_code, data=mydata, iter=5000, chains=3,
                            warmup=4000, n_jobs=3)

# Output
nlines = 9                                                                      # number of lines in screen output

output = str(fit).split('\n')
for item in output[:nlines]:
    print(item)   

 

====================================================

Output on screen:

Inference for Stan model: anon_model_49dc4b15f67427c0728b1e06ab4a4a1e.
3 chains, each with iter=5000; warmup=4000; thin=1; 
post-warmup draws per chain=1000, total post-warmup draws=3000.

                       mean   se_mean            sd         2.5%       25%       50%        75%     97.5%        n_eff       Rhat
beta[0]               1.0        6.2e-4        0.02         0.96        0.99          1.0        1.02        1.04      1097.0          1.0
beta[1]             1.99        8.0e-4        0.03         1.94        1.98        1.99        2.01        2.05      1097.0          1.0
gamma[0]        1.98        2.2e-3        0.07         1.84        1.93        1.98        2.03        2.12      1126.0          1.0
gamma[1]       -5.06        4.2e-3        0.14       -5.34       -5.15       -5.06      -4.96       -4.78      1188.0          1.0