HSI
From: Bayesian Models for Astrophysical Data, Cambridge Univ. Press
(c) 2017, Joseph M. Hilbe, Rafael S. de Souza and Emille E. O. Ishida
you are kindly asked to include the complete citation if you used this material in a publication
​
​
# Data from Code 6.11
library(MASS)
​
set.seed(141)
nobs <- 2500
​
x1 <- rbinom(nobs,size=1, prob=0.6)
x2 <- runif(nobs)
xb <- 1 + 2.0*x1 - 1.5*x2
a <- 3.3
theta <- 0.303 # 1/a
exb <- exp(xb)
nby <- rnegbin(n=nobs, mu=exb, theta=theta)
negbml <- data.frame(nby, x1, x2)
​
​
​
Code 6.14 Negative binomial with zero trick using JAGS directly
====================================================
library(R2jags)
​
X <- model.matrix(~ x1 + x2, data=negbml)
K <- ncol(X)
N <- nrow(negbml)
​
model.data <- list(
Y = negbml$nby,
N =N,
K =K,
X =X,
Zeros = rep(0, N)
)
​
sink("NB0.txt")
cat("
model{
# Priors regression parameters
for (i in 1:K) { beta[i] ~ dnorm(0, 0.0001)}
# Prior for alpha
numS ~ dnorm(0, 0.0016)
denomS ~ dnorm(0, 1)
alpha <- abs(numS / denomS)
C <- 10000
for (i in 1:N) {
# Log-likelihood function using zero trick:
Zeros[i] ~ dpois(Zeros.mean[i])
Zeros.mean[i] <- -L[i] + C
l1[i] <- 1/alpha * log(u[i])
l2[i] <- Y[i] * log(1 - u[i])
l3[i] <- loggam(Y[i] + 1/alpha)
l4[i] <- loggam(1/alpha)
l5[i] <- loggam(Y[i] + 1)
L[i] <- l1[i] + l2[i] + l3[i] - l4[i] - l5[i]
u[i] <- (1/alpha) / (1/alpha + mu[i])
log(mu[i]) <- max(-20, min(20, eta[i]))
eta[i] <- inprod(X[i,], beta[])
}
}
",fill = TRUE)
​
sink()
inits1 <- function () {
list(beta = rnorm(K, 0, 0.1),
numS = rnorm(1, 0, 25) ,
denomS = rnorm(1, 0, 1)
) }
params1 <- c("beta", "alpha")
NB01 <- jags(data = model.data,
inits = inits1,
parameters = params1,
model = "NB0.txt",
n.thin = 1,
n.chains = 3,
n.burnin = 3000,
n.iter = 5000)
​
print(NB01, intervals=c(0.025, 0.975), digits=3)
====================================================
Output on screen:
​
Inference for Bugs model at "NB0.txt", fit using jags,
3 chains, each with 5000 iterations (first 3000 discarded)
n.sims = 6000 iterations saved
mu.vect sd.vect 2.5% 97.5% Rhat n.eff
alpha 3.393 0.123 3.161 3.644 1.001 6000
beta[1] 0.979 0.090 0.798 1.154 1.001 5300
beta[2] 2.044 0.082 1.887 2.207 1.002 1200
beta[3] -1.601 0.139 -1.871 -1.316 1.001 6000
deviance 50011548.685 2.906 50011545.105 50011555.966 1.000 1
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
DIC info (using the rule, pD = var(deviance)/2)
pD = 4.2 and DIC = 50011552.9
DIC is an estimate of expected predictive error (lower deviance is better).