HSI
From: Bayesian Models for Astrophysical Data, Cambridge Univ. Press
(c) 2017, Joseph M. Hilbe, Rafael S. de Souza and Emille E. O. Ishida
you are kindly asked to include the complete citation if you used this material in a publication
​
​
​
# Data from code 6.11
library(MASS)
​
set.seed(141)
nobs <- 2500
​
x1 <- rbinom(nobs,size=1, prob=0.6)
x2 <- runif(nobs)
xb <- 1 + 2.0*x1 - 1.5*x2
a <- 3.3
theta <- 0.303 # 1/a
exb <- exp(xb)
nby <- rnegbin(n=nobs, mu=exb, theta=theta)
negbml <- data.frame(nby, x1, x2)
​
​
​
Code 6.13 Negative binomial: direct parameterization using JAGS and dnegbin
=============================================================
library(R2jags)
​
X <- model.matrix(~ x1 + x2, data=negbml)
K <- ncol(X)
​
model.data <- list(
Y = negbml$nby,
X = X,
K = K,
N = nrow(negbml))
​
# Model
sink("NBDGLM.txt")
​
cat("
model{
# Priors for coefficients
for (i in 1:K) { beta[i] ~ dnorm(0, 0.0001)}
​
# Prior for alpha
alpha ~ dunif(0.001, 5)
​
# Likelihood function
for (i in 1:N){
Y[i] ~ dnegbin(p[i], 1/alpha) # for indirect, (p[i], alpha)
p[i] <- 1/(1 + alpha*mu[i])
log(mu[i]) <- eta[i]
eta[i] <- inprod(beta[], X[i,])
}
}
",fill = TRUE)
​
sink()
​
inits <- function () {
list(
beta = rnorm(K, 0, 0.1), # regression parameters
alpha = runif(0.00, 5)
)
}
​
params <- c("beta", "alpha")
​
NB3 <- jags(data = model.data,
inits = inits,
parameters = params,
model = "NBDGLM.txt",
n.thin = 1,
n.chains = 3,
n.burnin = 3000,
n.iter = 5000)
​
print(NB3, intervals=c(0.025, 0.975), digits=3)
​===========================================================
​
Output on screen:
​
Inference for Bugs model at "NBDGLM.txt", fit using jags,
3 chains, each with 5000 iterations (first 3000 discarded)
n.sims = 6000 iterations saved
mu.vect sd.vect 2.5% 97.5% Rhat n.eff
alpha 3.398 0.124 3.159 3.644 1.001 3000
beta[1] 0.994 0.090 0.821 1.163 1.010 290
beta[2] 2.039 0.083 1.875 2.200 1.005 440
beta[3] -1.622 0.139 -1.893 -1.356 1.007 440
deviance 11548.717 2.900 11545.148 11555.896 1.007 670
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
DIC info (using the rule, pD = var(deviance)/2)
pD = 4.2 and DIC = 11552.9
DIC is an estimate of expected predictive error (lower deviance is better).