HSI
From: Bayesian Models for Astrophysical Data, Cambridge Univ. Press
(c) 2017, Joseph M. Hilbe, Rafael S. de Souza and Emille E. O. Ishida
you are kindly asked to include the complete citation if you used this material in a publication
​
​
Code 5.14 Beta model in Python using Stan
================================================
import numpy as np
import statsmodels.api as sm
import pystan
from scipy.stats import uniform
from scipy.stats import beta as beta_dist
​
# Data
np.random.seed(1056) # set seed to replicate example
nobs= 2000 # number of obs in model
x1 = uniform.rvs(size=nobs) # random uniform variable
beta0 = 0.3
beta1 = 1.5
theta = 15
xb = beta0 + beta1 * x1
exb = np.exp(-xb)
p = exb / (1 + exb)
y = beta_dist.rvs(theta * (1 - p), theta * p) # create y as adjusted
# Fit
mydata = {}
mydata['N'] = nobs # sample size
mydata['x1'] = x1 # predictors
mydata['y'] = y # response variable
stan_code = """
data{
int<lower=0> N;
vector[N] x1;
vector<lower=0, upper=1>[N] y;
}
parameters{
real beta0;
real beta1;
real<lower=0> theta;
}
model{
vector[N] eta;
vector[N] p;
vector[N] shape1;
vector[N] shape2;
​
for (i in 1:N){
eta[i] = beta0 + beta1 * x1[i];
p[i] = inv_logit(eta[i]);
shape1[i] = theta * p[i];
shape2[i] = theta * (1 - p[i]);
}
y ~ beta(shape1, shape2);
}
"""
​
# Run mcmc
fit = pystan.stan(model_code=stan_code, data=mydata, iter=5000, chains=3,
warmup=2500, n_jobs=3)
# Output
print(fit)
================================================
Output on screen:
​
Inference for Stan model: anon_model_955d748487258410d89e68cefe178077.
3 chains, each with iter=5000; warmup=2500; thin=1;
post-warmup draws per chain=2500, total post-warmup draws=7500.
​
mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
beta0 0.34 4.2e-4 0.02 0.29 0.32 0.34 0.35 0.38 3132.0 1.0
beta1 1.43 7.8e-4 0.04 1.35 1.40 1.43 1.46 1.52 3160.0 1.0
theta 15.10 7.3e-3 0.45 14.20 14.80 15.10 15.40 16.00 3906.0 1.0
lp__ 1709.40 0.02 1.16 1706.5 1708.80 1709.60 1710.20 1710.70 3033.0 1.0
​
Samples were drawn using NUTS at Thu Dec 22 17:35:40 2016.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).