HSI
From: Bayesian Models for Astrophysical Data, Cambridge Univ. Press
(c) 2017, Joseph M. Hilbe, Rafael S. de Souza and Emille E. O. Ishida
you are kindly asked to include the complete citation if you used this material in a publication
​
​
​
​
Code 10.14 Poisson model, in R using JAGS, for modeling the relation between globular clusters population and host galaxy visual magnitude
=================================================================================
require(R2jags)
require(jagstools)
# Data
path_to_data = "https://raw.githubusercontent.com/astrobayes/BMAD/master/data/Section_10p7/GCs.csv"
# Read data
GC_dat = read.csv(file=path_to_data,header = T,dec=".")
# Prepare data to JAGS
N <- nrow(GC_dat)
x <- GC_dat$MV_T
y <- GC_dat$N_GC
X <- model.matrix(~ x, data=GC_dat)
K = ncol(X)
JAGS_data <- list(
Y = y,
X = X,
N = N,
K = K)
# Fit
model.pois <- "model{
# Diffuse normal priors betas
for (i in 1:K) { beta[i] ~ dnorm(0, 1e-5)}
for (i in 1:N){
# Likelihood
eta[i]<-inprod(beta[], X[i,])
mu[i] <- exp(eta[i])
Y[i]~dpois(mu[i])
# Discrepancy
expY[i] <- mu[i] # mean
varY[i] <- mu[i] # variance
PRes[i] <- ((Y[i] - expY[i])/sqrt(varY[i]))^2
}
Dispersion <- sum(PRes)/(N-2)
}"
# Define initial values
inits <- function () {
list(beta = rnorm(K, 0, 0.1))
}
# Identify parameters
params <- c("beta","Dispersion")
# Start JAGS
pois_fit <- jags(data = JAGS_data ,
inits = inits,
parameters = params,
model = textConnection(model.pois),
n.thin = 1,
n.chains = 3,
n.burnin = 3500,
n.iter = 7000)
# Output
print(pois_fit , intervals=c(0.025, 0.975), digits=3)
=================================================================================
​
Output on screen:
​
Inference for Bugs model at "3", fit using jags,
3 chains, each with 7000 iterations (first 3500 discarded)
n.sims = 10500 iterations saved
mu.vect sd.vect 2.5% 97.5% Rhat n.eff
Dispersion 1080.232 0.205 1079.881 1080.603 1.018 10000
beta[1] -11.910 0.038 -11.966 -11.855 1.016 10000
beta[2] -0.918 0.002 -0.920 -0.915 1.016 10000
deviance 497171.835 935.473 495628.137 498733.429 1.005 10000
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
DIC info (using the rule, pD = var(deviance)/2)
pD = 437637.2 and DIC = 934809.1
DIC is an estimate of expected predictive error (lower deviance is better).